Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)

Saibon Cycle

Climate Ecosystems Atmospheric Composition

A Crosol Life

POLICI

fe Cycle

Presented by Scot Martin (Harvard) on behalf of Brazil and USA partners

May 2013

CHUVA Meeting, USP, Brazil

NO₂ Outflow from Manaus in Aug 2010 observed by OMI

Acknowledgments: Jun Wang, Univ. Nebraska

Manaus: Vehicle Fleet 2010

Frota de Veículos			
	Quantidade		
Motoneta Motocicleta Automóvel Microônibus Ônibus	8.563 83.459 252.274 2.334		
Reboque Semi-reboque Camioneta	5.807 1.677 9.754 18.812		
Caminhão Caminhão-Trator Caminhonete Ciclomotor	14.631 2.019 49.981 329		
Trator rodas Triciclo Utilitários Outros	48 100 2.403 109		

452.300

FUEL MIX:

-tractor, truck and bus: almost 100% diesel

-car and bikes : > 60% gasoline (*)

(*) Ethanol price is very high in Manaus and gasoline is preferred by the consumer.

Acknowledgments: Rodrigo Souza, UEA

Manaus: Power Plant 2009: Fuel Oil

TABELA 1 - CONFIGURAÇÃO DO PARQUE GERADOR DO SISTEMA MANAUS AMAZONAS - AGOSTO DE 2009

Usina		Potência do Sistema (MW)		Tipo de UG	Tipo de óleo		
		Nominal	Efetiva	Disponível	•		
Geração hídrica	u UHE Balbina	250,0	250,0	250,0	Turbina hidráulica		Hydropower
	Aparecida	198,0	172,0	75,0	Turbina a Gás	PTE	Oils of different
	Mauá	452,4	437,0	259,6	Turbina a Vapor, Gás e Motor	Combustível, PTE e PGE	grades
Geração Térmic	a Electron	120,0	102,2	0,0	Turbina a Gás	PTE	Elétrica"
Diesel	UTE*	149,8	120,8	94,2		Óleo	PGE - óleo combustível "Para Gerador Elétrico"
TOTAL GERAÇÃ	o própria	1.170,6	1.081,3	678,45			
	Breitener Tambaqui	83,5	60,0	60,0	Turbina a Gás	OCA-1	OCA-1 = Óleo
Produtor Independente	Breitener Jaraqui	83,5	60,0	56,7	Turbina a Gás	OCA-1	Combustível com Alto teor de
	Manauara	85,4	60,0	60,0	Turbina a Gás	OCA-1	enxofre = Fuel
	Rio Amazonas	85,4	65,0	65,0	Turbina a Gás	OCA-1	Oil with High
	GERA	85,4	60,0	60,0	Turbina a Gás	OCA-1	Sulfur
TOTAL DE COMP	RAS	423,1	305,0	301,7			
TOTAL GERAL D	O SISTEMA	1.593,7	1.386,3	980,2			

Acknowledgments: Rodrigo Souza, UEA

GoAmazon Site Locations

Downwind of Manaus

Reference: Kuhn, U.; Ganzeveld, L.; Thielmann, A.; Dindorf, T.; Welling, M.; Sciare, J.; Roberts, G.; Meixner, F. X.; Kesselmeier, J.; Lelieveld, J.; Ciccioli, P.; Kolle, O.; Lloyd, J.; Trentmann, J.; Artaxo, P.; Andreae, M. O., "Impact of Manaus City on the Amazon Green Ocean atmosphere: Ozone production, precursor sensitivity, and aerosol load," *Atmos. Chem. Phys.* **2010**, *10*, 9251-9282.

Reference: Kuhn, U.; Ganzeveld, L.; Thielmann, A.; Dindorf, T.; Welling, M.; Sciare, J.; Roberts, G.; Meixner, F. X.; Kesselmeier, J.; Lelieveld, J.; Ciccioli, P.; Kolle, O.; Lloyd, J.; Trentmann, J.; Artaxo, P.; Andreae, M. O., "Impact of Manaus City on the Amazon Green Ocean atmosphere: Ozone production, precursor sensitivity, and aerosol load," *Atmos. Chem. Phys.* **2010**, *10*, 9251-9282.

Downwind of Manaus

The deployment site is situated in the steady trade winds such that it experiences the extremes of:

(i) a pristine atmosphere when the Manaus pollution plume meanders; and

(ii) heavy pollution and the interactions of that pollution with the natural environment when the plume regularly intersects the site.

Reminder: GoAmazon2014/5 *Theme:* What is the effect of pollution on ... these cycles and the coupling among them?

Amazon Basin has strong coupling between terrestrial ecosystem and the hydrologic cycle: The linkages among carbon cycle, aerosol life cycle, and cloud life cycle need to be understood and quantified.

Source: Barth et al., "Coupling between Land Ecosystems and the Atmospheric Hydrologic Cycle through Biogenic Aerosol Particles," *BAMS*, *86*, 1738-1742, 2005.

Susceptibility and expected reaction to stresses of global climate change as well as pollution introduced by future regional economic development are not known or quantified at present time.

Cloud Life Cycle, Aerosol Life Cycle, Aerosol-Cloud-Precipitation Interactions, Carbon Cycle are all represented in this schematic.

GoAmazon2014: What is the effect of pollution on... these cycles and the coupling among them?

Source: Pöschl, Martin, et al., "Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon," *Science*, 2010, 329, 1513-1516.

Dates of GoAmazon2014/5

AMF Operations (T3 ground site)

• 1 January 2014 until 31 December 2015

AAF Operations (aircraft)

- 15 February until 26 March 2014 (wet season) (75 hrs)
- 1 September until 10 October 2014 (dry season) (75 hrs)

Aircraft operations correspond to the two *intensive operating periods* planned for the experiment.

December 2011: Fence and Weather Station

18 March 2013, T3

ARM Mobile Facility in Amazônia (AMFA) (Jan 2014)

ARM Mobile Facility One - Typical Deployment

AMF1

AMF1 – 7 x 20' sea containers 1 full-time on-site technician

- □ Precision Spectral Pyranometer (PSP) x 2
- Precision Infrared Radiometer (PIR) x 2
- □ Shaded Black & White Pyranometer (B/W)
- □ Shaded Precision Infrared Pyrgeometer (PIR)
- □ Normal Incidence Pyrhiliometer (NIP)
- □ Infrared Thermometer (IRT) x 2
- Multi-Filter Rotating Shadowband Radiometer (MFRSR)
- □ Narrow Field of View Zenith Radiometer (NFOV)
- Optical Rain Gauge (ORG)
- □ Anemometers (WND)
- □ Temperature/Relative Humidity Sensor (T/RH)
- Barometer (BAR)
- Present Weather Detector (PWD)
- Eddy Correlation Flux Measurement System (ECOR)
- □ Shortwave Array Spectrometer (SAS-He, SAS-Ze)

LANL Solar Fourier Transform Spectrophotometer (FTS) (Dubey) (OCO-2 validation)

- □ Microwave Radiometer (MWR)
- □ Microwave Radiometer Profiler (MWRP)
- □ Microwave Radiometer 90/150 (MWR-HF)
- Doppler Lidar (DL)
- Ceilometer (CEIL)
- □ Balloon Borne Sounding System (BBSS)
- UW-band ARM Cloud Radar 95GHz (WACR)
- □ Ka-W Scanning ARM Cloud Radar (SACR)
- □ Atmospheric Emitted Radiance Interferometer (AERI)
- □ Total Sky Imager (TSI)
- □ Aerosol Observation System (AOS)
 - CCNC
 - PSAP
 - Nephelometers X 2
- Radar Wind Profiler 1290MHz (RWP)
- Cimel Sunphotometer (CSPHOT)

MAOS

Mobile Aerosol Observing System (MAOS) – 2 x 20' sea containers (MAOS-A & MAOS-C); technician + 2 x full time post-docs (supplied by ARM) ; Guest operational personnel (up to 5)

- SOnic Detection And Ranging (SODAR) System (1000 to 4000 Hz)
- Ultra-High Sensitivity Aerosol Spectrometer (enhanced) Senum
- Dual Column Cloud Condensation Nuclei Counter (CCN) Senum
- □ Single Particle Soot Photometer (SP2) Sedlacek
- Scanning Mobility Particle Sizer (SMPS) Kuang
- Photo-Acoustic Soot Spectrometer (PASS), 3 Wavelength Dubey and Aiken
- □ Trace Gas Instrument System (Research-Grade) (CO, NO, NO₂, NO_y, O₃, SO₂) Springston
- Particle Into Liquid Sampler-Ion Chromatography-Water Soluble Organic Carbon (PILS-IC-WSOC) Watson and Lee
- Particle Soot Absorption Photometer (PSAP), 3 Wavelength Springston
- Condensation Particle Counter (CPC), 10 nm to >3000 nm particle size range Kuang
- Condensation Particle Counter (CPC), 2.5 nm to >3000 nm particle size range Kuang
- U Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) Senum
- Proton Transfer Mass Spectrometer (PTRMS) Watson
- □ 7-Wavelength Aethelometer Sedlacek
- Uweather Transmitter (WXT-520) Springston
- Aerosol Chemistry Speciation Monitor (ACSM) Watson
- Ambient Nephelometer (3 wavelength) Senum
- Controlled RH Nephelometer (3 wavelength) Senum
- DMA-CCN Wang
- HR-ToF-AMS Alexander

"Intensive Airborne Research in Amazonia 2014" (IARA-2014) The ARM Aerial Facility (AAF) in Brazil

IARA-2014: AAF G1 Payload

Platform Position/Velocity/Altitude					
Instrument	Trimble DSM	Trimble TANS 10 Hz			
Measurement	position/velocity at 10 Hz	pitch/roll/azimuth			
Atmospheric State					
Instrument	Rosemont 102 probe	Rosemount 1201F1	Rosemont 1221F2 (3)		
Measurement	temperature	static pressure	differential pressure (dynamic, alpha, beta)		
Instrument	GE-1011B chilled-mirror hygrometer	AIMMS-20			
Measurement	dew-point temperature	5-port air motion sensing: true air speed, altitude, angle-of-attack, side-slip, temperature, relative humidity			
Aerosol Mea	surements				
Instrument	TSI 3025 ultrafine condensation particle counter (UCPC)	TSI 3010 condensation particle counter (CPC)	fast integrated mobility spectrometer (FIMS)		
Measurement	total particle concentration (>3 nm)	total particle concentration (>10 nm)	aerosol particle size distribution (30 to 100 nm)		
Instrument	passive cavity aerosol spectrometer probe (PCASP)	particle/soot absorption photometer (PSAP)	TSI Nephelometer		
Measurement	aerosol particle size distribution (100 to 3000 nm)	aerosol particle light absorption at 3 wavelengths	aerosol particle light scattering at 3 wavelengths		
Instrument	Aerodyne HR-ToF-AMS	DMT Dual Cloud Condensation Nuclei Counter (CCNC)	isokinetic inlet (heated)		
Measurement	size-resolved particle composition	CCN concentrations at two supersaturations	sample stream of dry aerosol, sizes < 2.5 μm		
Gas Measure	ements				
Instrument	Ionicon Quadrupole PTR-MS	carbon monoxide analyzer	oxides of nitrogen instrument		
Measurement	real-time VOCs	СО	NO, NO_2, NO_y		
Instrument	Thermo environmental model 49i	Picarro cavity ringdown spectrometer			
Measurement	0 ₃	CO ₂ , CH ₄ , H ₂ O			

IARA-2014: AAF G1 Payload

Cloud Measurements

Instrument	HVPS-3	2DS	Fast-CDP
Measurement	cloud droplet size distribution (400 to	cloud droplet size distribution (10 to 3000	cloud droplet size distribution (2 to 50
	50000 μm)	μm)	μm)
Instrument	CIP	SEA WCM-2000	
Measurement	images of cloud particles	liquid water content and total water	
	(2 to 1000 μm)	content	
Radiation			
Instrument	SPN-1 unshaded	SPN-1 unshaded	
Measurement	downwelling shortwave radiation	Upwelling shortwave radiation	
Other Measu	irements		
Instrument	SEA M300	weather radar	TCAS
Measurement	central data acquisition/ display system	cockpit display of precipitation returns	traffic collision and avoidance system
Measurement Instrument	central data acquisition/ display system TAWS	cockpit display of precipitation returns	traffic collision and avoidance system

IARA – Intensive Airborne Research in Amazonia **Flight Plan #7** 1:35 to complete one pattern. A white paper on

Effects of Anthropogenic Pollution on the Atmospheric Chemistry of the Tropical Rain Forest: *Intensive Operating Periods (IOPs) of GoAmazon2014*

Meinrat O. Andreae, Paulo Artaxo, William Brune, Peter Buseck, <u>Manvendra Dubey</u>, Jiwen Fan, Delphine Farmer, Jerome Fast, Allen Goldstein, Alex Guenther, Jose Jimenez, Jürgen Kesselmeier, Frank Keutsch, Larry Kleinman, Karla Longo, Antonio Manzi, Scot Martin^{*}, Luciana Rizzo, John Shilling, Rodrigo Souza, Julio Tota, Ivonne Trebs, Jian Wang^{*}, Rodney Weber

*scot_martin@harvard.edu; jian@bnl.gov

Original: 29 August 2012. Updated: 05 March 2013

Two Brazil-side containers (FAPEAM) being outfitted with assistance from LANL

Normalized Size Distributions: **Polluted** and **Clean** Conditions

Source: S. Martin, J. Wang, R. Souza, P. Artaxo, Y. Ishida, J. Jimenez, private communication

Seasonal Particle Number Concentration

Source: Luciana Rizzo and Paulo Artaxo, private communication

Proposed NCAR facilities and timeline

S-Pol radar

Doppler, polarimetric measurements at

- S-band (10 cm, non-attenuating) and
- K_a-band (0.8 cm, heavily attenuating)

2 Integrated Sounding Systems (ISS)

- GAUS radiosonde sounding system
 - 6/day launches
- Wind profiler/RASS
- Surface meteorology

Deployment periods

- IOP: Sep/Oct 2014 (transition season)
- IOP: Feb/Mar 2015 (wet season)

Potential S-Pol and sounding array sites

This network will provide more extensive observations of deep convection and the large-scale environment during GOAmazon.

<u>Aerosol, Cloud, Precipitation, and Radiation</u> Interactions and Dynamics of Convective Cloud Systems (ACRIDICON)

ACRIDICON

- Aerosol particles: SD, BC, CCN, IN, Backscatter, Depol, Mixing State, Hygroscopicity
- Cloud particles/nuclei: SD, LWC, IWC
- Radiation/remote sensing: Spectral Radiometers, DOAS, LIDAR, LWP, IWP, RWP, SWP, GWP, humidity, and temperature profiles as well vertical hydrometeor classification.
- Precipitation/dynamics: RADAR
- Trace gases: CO, O3, SO2, NOx, NOy, PFC, CH2O NO2, HONO, BrO, IO, OIO, O2 und O4, H2O (Gas)
- Inlets: CVI, MAI, HASI (submicrometer and micrometer)
- Wing station probes:

Wing station probes

A	CR	D	Ν

- (1) Cloud Vertical Evolution
- (2) Aerosol Processing
- (3) Satellite Validation
- (4) Vertical Transport & Mixing

(Cloud Profiling)

(Inflow, Outflow)

(Cloud Products)

(Artificial Tracer)

- → Contrast of pristine and highly polluted conditions (in comparable thermodynamic environments)
- → Contrasting thermodynamic conditions (cloud base temperatures, humidity fields, wind shear)

Objectives:

- Characterize aerosol properties in the **inflow and outflow**.
- Quantify the **vertical redistribution** of aerosols.
- Study particle formation processes and the evolution of aerosol properties (size distributions, chemical processing) in the **fresh and ageing outflow** of convective cells.
- Assess the **cloud processing** of aerosol particles, in particular black carbon containing particles.

ACRIDICON

LBA: A Program of the Ministry of Science and Technology (MCT)

Main research foci:

- The changing environment of Amazonia
- Environmental sustainability and the sustainability of current terrestrial and aquatic production systems
- Variability and changes in climatic and hydrologic systems feedback, adaptation and mitigation

Acknowledgments: Laszlo Nagy, INPA/LBA

Brazil-Side Organizations

- LBA Large-Scale Biosphere Atmosphere Experiment, http://lba.inpa.gov.br/lba/
- INPA National Institute for Amazonian Research, <u>http://www.inpa.gov.br/</u>
- INPE National Institute for Space Research, <u>http://www.inpe.br/ingles/index.php</u>
- CTA Department of Science and Aerospace Technology, <u>http://www.cta.br/</u>
- UEA University of the State of Amazonas, <u>http://www1.uea.edu.br/</u>
- USP University of São Paulo, <u>http://www.thefullwiki.org/University_of_Sao_Paulo</u>, <u>http://web.if.usp.br/ifusp/</u>, <u>http://www.master.iag.usp.br/index.php?pi=N</u>
- GPM-CHUVA (<u>http://chuvaproject.cptec.inpe.br/portal/en/index.html</u>)
- CsF Ciencias Sem Fronteiras (<u>http://www.cienciasemfronteiras.gov.br/</u>)
- FAPEAM Fundação de Amparo à Pesquisa do Estado do Amazonas (<u>www.fapeam.am.gov.br</u>)
- FAPESP Fundação de Apoio à Pesquisa do Estado do São Paulo (<u>www.fapesp.br</u>)

Join this Google group to receive email from PI:

http://groups.google.com/group/GoAmazon2014

Websites:

DOE maintained: <u>http://campaign.arm.gov/goamazon2014/</u>. See there a workshop report of July 2011.

PI maintained: <u>http://www.seas.harvard.edu/environmental-</u> <u>chemistry/GoAmazon2014/</u>